refacto(*): manage errors without panics
This commit is contained in:
parent
c4f2288861
commit
258a4189c0
|
@ -3,13 +3,20 @@ use std::process;
|
|||
|
||||
fn main() {
|
||||
let args: Vec<String> = env::args().collect();
|
||||
if args.len() != 2 {
|
||||
println!("Error: You need to run this program with exactly 1 argument");
|
||||
process::exit(1);
|
||||
}
|
||||
let equation = computorv1::parse(&args[1]).unwrap_or_else(|e| {
|
||||
println!("Error during parsing: {e}");
|
||||
process::exit(1);
|
||||
});
|
||||
println!("{:?}", equation);
|
||||
let is_equation = computorv1::maths::evaluator::is_equation(&equation);
|
||||
let evaluated = computorv1::maths::evaluator::evaluate(equation);
|
||||
let evaluated = computorv1::maths::evaluator::evaluate(equation).unwrap_or_else(|e| {
|
||||
println!("Error during evaluation: {e}");
|
||||
process::exit(1);
|
||||
});
|
||||
computorv1::pretty(&evaluated);
|
||||
if is_equation {
|
||||
computorv1::maths::solver::solve(evaluated);
|
||||
|
|
|
@ -69,15 +69,15 @@ fn mul(lhs: Vec<GaussianRational>, rhs: &Vec<GaussianRational>) -> Vec<GaussianR
|
|||
res
|
||||
}
|
||||
|
||||
fn exp(lhs: Vec<GaussianRational>, rhs: Vec<GaussianRational>) -> Vec<GaussianRational> {
|
||||
fn exp(lhs: Vec<GaussianRational>, rhs: Vec<GaussianRational>) -> Result<Vec<GaussianRational>, String> {
|
||||
if rhs.len() != 1 {
|
||||
panic!("Eh t'y es fou mon gate puissance d'inconnu !");
|
||||
return Err(format!("exponential only supports natural exponents, unknown exponents aren't supported"));
|
||||
}
|
||||
if rhs[0].imaginary.numerator != 0 {
|
||||
panic!("Diablerie une puissance complexe !");
|
||||
return Err(format!("exponential only supports natural exponents, complex exponents aren't supported"));
|
||||
}
|
||||
if rhs[0].real.denominator != 1 {
|
||||
panic!("MON DIEU UNE PUISSANCE DE RATIONNEL");
|
||||
return Err(format!("exponential only supports natural exponents, rational exponents aren't supported"));
|
||||
}
|
||||
let mut res = Vec::new();
|
||||
let pow = rhs[0].real.numerator;
|
||||
|
@ -85,7 +85,7 @@ fn exp(lhs: Vec<GaussianRational>, rhs: Vec<GaussianRational>) -> Vec<GaussianRa
|
|||
for _ in 0..pow {
|
||||
res = mul(res, &lhs);
|
||||
}
|
||||
res
|
||||
Ok(res)
|
||||
}
|
||||
|
||||
fn check_div(lhs: &Vec<GaussianRational>, rhs: &Vec<GaussianRational>) -> bool {
|
||||
|
@ -97,12 +97,12 @@ fn check_div(lhs: &Vec<GaussianRational>, rhs: &Vec<GaussianRational>) -> bool {
|
|||
true
|
||||
}
|
||||
|
||||
fn div(lhs: Vec<GaussianRational>, rhs: Vec<GaussianRational>) -> Vec<GaussianRational> {
|
||||
fn div(lhs: Vec<GaussianRational>, rhs: Vec<GaussianRational>) -> Result<Vec<GaussianRational>, String> {
|
||||
if rhs.len() > lhs.len() {
|
||||
panic!("faut pas diviser par plus grande puissance d'inconnu que sois meme :$");
|
||||
return Err(format!("division supported if the divisor to be of same or smaller degree than the dividend."));
|
||||
}
|
||||
if !check_div(&lhs, &rhs) {
|
||||
panic!("Moi je sais pas faire heing");
|
||||
return Err(format!("division supported if the divisor has only one non zero coefficient"));
|
||||
}
|
||||
|
||||
let denominator = *rhs.last().unwrap();
|
||||
|
@ -117,17 +117,18 @@ fn div(lhs: Vec<GaussianRational>, rhs: Vec<GaussianRational>) -> Vec<GaussianRa
|
|||
res[res_i] = lhs[i] / denominator;
|
||||
}
|
||||
|
||||
res
|
||||
Ok(res)
|
||||
}
|
||||
|
||||
fn calculate(operator: Token, lhs: Vec<GaussianRational>, rhs: Vec<GaussianRational>) -> Vec<GaussianRational> {
|
||||
fn calculate(operator: Token, lhs: Vec<GaussianRational>, rhs: Vec<GaussianRational>) -> Result<Vec<GaussianRational>, String> {
|
||||
match operator {
|
||||
Token::Addition() => add(lhs, rhs),
|
||||
Token::Substraction() => sub(lhs, rhs),
|
||||
Token::Multiplication() => mul(lhs, &rhs),
|
||||
Token::Addition() => Ok(add(lhs, rhs)),
|
||||
Token::Substraction() => Ok(sub(lhs, rhs)),
|
||||
Token::Multiplication() => Ok(mul(lhs, &rhs)),
|
||||
Token::Division() => div(lhs, rhs),
|
||||
Token::Exponentiation() => exp(lhs, rhs),
|
||||
Token::Equal() => sub(lhs, rhs),
|
||||
Token::Equal() => Ok(sub(lhs, rhs)),
|
||||
Token::Modulo() => Err(format!("modulo isn't suported yet by this program.")),
|
||||
_ => unreachable!(),
|
||||
}
|
||||
}
|
||||
|
@ -140,11 +141,11 @@ fn calculate_unary(operator: Token, operand: Vec<GaussianRational>) -> Vec<Gauss
|
|||
}
|
||||
}
|
||||
|
||||
pub fn evaluate(ast: Node) -> Vec<GaussianRational> {
|
||||
pub fn evaluate(ast: Node) -> Result<Vec<GaussianRational>, String> {
|
||||
match ast {
|
||||
Node::Binary { operator, lhs, rhs } => calculate(operator, evaluate(*lhs), evaluate(*rhs)),
|
||||
Node::Unary { operator, operand } => calculate_unary(operator, evaluate(*operand)),
|
||||
Node::Leaf(value) => value,
|
||||
Node::Binary { operator, lhs, rhs } => calculate(operator, evaluate(*lhs)?, evaluate(*rhs)?),
|
||||
Node::Unary { operator, operand } => Ok(calculate_unary(operator, evaluate(*operand)?)),
|
||||
Node::Leaf(value) => Ok(value),
|
||||
}
|
||||
}
|
||||
|
||||
|
|
|
@ -35,6 +35,8 @@ pub fn solve(mut equation: Vec<GaussianRational>) -> Vec<GaussianRational> {
|
|||
for i in (1..equation.len()).rev() {
|
||||
if equation[i] == zero() {
|
||||
equation.pop();
|
||||
} else {
|
||||
break;
|
||||
}
|
||||
}
|
||||
crate::pretty(&equation);
|
||||
|
|
Loading…
Reference in New Issue