clean(*): remove println
This commit is contained in:
parent
b48b516102
commit
0f363e0452
|
@ -20,11 +20,8 @@ pub fn pretty(v: &Vec<GaussianRational>) {
|
||||||
|
|
||||||
pub fn parse(query: &str) -> Result<Node, Box<dyn Error>> {
|
pub fn parse(query: &str) -> Result<Node, Box<dyn Error>> {
|
||||||
let tokens = tokenize(query)?;
|
let tokens = tokenize(query)?;
|
||||||
println!("{:?}", tokens);
|
|
||||||
let sanitized_tokens = sanitize_tokens(tokens)?;
|
let sanitized_tokens = sanitize_tokens(tokens)?;
|
||||||
println!("{:?}", sanitized_tokens);
|
|
||||||
let ast = build_ast(sanitized_tokens);
|
let ast = build_ast(sanitized_tokens);
|
||||||
println!("{:?}", ast);
|
|
||||||
|
|
||||||
Ok(ast)
|
Ok(ast)
|
||||||
}
|
}
|
||||||
|
|
|
@ -11,7 +11,6 @@ fn main() {
|
||||||
println!("Error during parsing: {e}");
|
println!("Error during parsing: {e}");
|
||||||
process::exit(1);
|
process::exit(1);
|
||||||
});
|
});
|
||||||
println!("{:?}", equation);
|
|
||||||
let is_equation = computorv1::maths::evaluator::is_equation(&equation);
|
let is_equation = computorv1::maths::evaluator::is_equation(&equation);
|
||||||
let evaluated = computorv1::maths::evaluator::evaluate(equation).unwrap_or_else(|e| {
|
let evaluated = computorv1::maths::evaluator::evaluate(equation).unwrap_or_else(|e| {
|
||||||
println!("Error during evaluation: {e}");
|
println!("Error during evaluation: {e}");
|
||||||
|
|
|
@ -268,9 +268,10 @@ impl ops::Div<GaussianRational> for GaussianRational {
|
||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
|
#[cfg(test)]
|
||||||
mod tests {
|
mod tests {
|
||||||
use super::*;
|
use super::*;
|
||||||
|
|
||||||
#[test]
|
#[test]
|
||||||
fn gcd_test() {
|
fn gcd_test() {
|
||||||
assert_eq!(gcd(7, 3), 1);
|
assert_eq!(gcd(7, 3), 1);
|
||||||
|
|
|
@ -43,7 +43,6 @@ fn sub(lhs: Vec<GaussianRational>, rhs: Vec<GaussianRational>) -> Vec<GaussianRa
|
||||||
}
|
}
|
||||||
|
|
||||||
fn mul(lhs: Vec<GaussianRational>, rhs: &Vec<GaussianRational>) -> Vec<GaussianRational> {
|
fn mul(lhs: Vec<GaussianRational>, rhs: &Vec<GaussianRational>) -> Vec<GaussianRational> {
|
||||||
println!("\nIci ca multiplie {:?} et {:?}", lhs, rhs);
|
|
||||||
let len = lhs.len() + rhs.len() - 1;
|
let len = lhs.len() + rhs.len() - 1;
|
||||||
let mut res = Vec::new();
|
let mut res = Vec::new();
|
||||||
for _ in 0..len {
|
for _ in 0..len {
|
||||||
|
|
|
@ -37,14 +37,11 @@ fn simplify_sqrt(mut n: i128) -> (i128, i128) {
|
||||||
}
|
}
|
||||||
let mut prime_factors = vec![];
|
let mut prime_factors = vec![];
|
||||||
let mut prime = 3;
|
let mut prime = 3;
|
||||||
println!("stuck {n}");
|
|
||||||
while n != 1 && prime * prime < n {
|
while n != 1 && prime * prime < n {
|
||||||
if n % (prime - 1) == 0 {
|
if n % (prime - 1) == 0 {
|
||||||
println!("stuck {n} {}", prime - 1);
|
|
||||||
prime_factors.push(prime - 1);
|
prime_factors.push(prime - 1);
|
||||||
n /= prime - 1;
|
n /= prime - 1;
|
||||||
} else if n % (prime + 1) == 0 {
|
} else if n % (prime + 1) == 0 {
|
||||||
println!("stuck {n} {}", prime + 1);
|
|
||||||
prime_factors.push(prime + 1);
|
prime_factors.push(prime + 1);
|
||||||
n /= prime + 1;
|
n /= prime + 1;
|
||||||
} else {
|
} else {
|
||||||
|
@ -77,22 +74,16 @@ fn simplify_sqrt(mut n: i128) -> (i128, i128) {
|
||||||
}
|
}
|
||||||
|
|
||||||
fn comp_sqrt(c: GaussianRational) -> MyCompSqrt {
|
fn comp_sqrt(c: GaussianRational) -> MyCompSqrt {
|
||||||
println!("c in comp_sqrt: {:?}", c);
|
|
||||||
let real = c.real();
|
let real = c.real();
|
||||||
let imag = c.imaginary();
|
let imag = c.imaginary();
|
||||||
let n = real * real + imag * imag;
|
let n = real * real + imag * imag;
|
||||||
let numerator_irrational = n.numerator * n.denominator;
|
let numerator_irrational = n.numerator * n.denominator;
|
||||||
println!("numerator_irrational {:?}", numerator_irrational);
|
|
||||||
let (mut numerator_natural, numerator_irrational) = simplify_sqrt(numerator_irrational);
|
let (mut numerator_natural, numerator_irrational) = simplify_sqrt(numerator_irrational);
|
||||||
println!("numerator_irrational {:?} numerator_natural {:?}", numerator_irrational, numerator_natural);
|
|
||||||
|
|
||||||
let mut denominator = n.denominator;
|
let mut denominator = n.denominator;
|
||||||
let gcd_var = gcd(numerator_natural, denominator);
|
let gcd_var = gcd(numerator_natural, denominator);
|
||||||
denominator /= gcd_var;
|
denominator /= gcd_var;
|
||||||
numerator_natural /= gcd_var;
|
numerator_natural /= gcd_var;
|
||||||
println!("{numerator_natural} * sqrt({numerator_irrational})");
|
|
||||||
println!("----------------------");
|
|
||||||
println!("{denominator}");
|
|
||||||
let mut sqrt = MySqrt {
|
let mut sqrt = MySqrt {
|
||||||
numerator_natural,
|
numerator_natural,
|
||||||
numerator_irrational,
|
numerator_irrational,
|
||||||
|
@ -170,24 +161,17 @@ fn get_strings(left_part: Rational, sqrt_delta: MySqrt) -> (String, String, Stri
|
||||||
let len = std::cmp::max(string_a.len(), format!("{d}").len()) + 2;
|
let len = std::cmp::max(string_a.len(), format!("{d}").len()) + 2;
|
||||||
let len_b = std::cmp::max(string_b.len(), format!("{d}").len()) + 2;
|
let len_b = std::cmp::max(string_b.len(), format!("{d}").len()) + 2;
|
||||||
|
|
||||||
println!("len {len}, b {len_b}");
|
|
||||||
|
|
||||||
let len1 = len - string_a.len();
|
let len1 = len - string_a.len();
|
||||||
let len2 = len - d.to_string().len();
|
let len2 = len - d.to_string().len();
|
||||||
let len1b = len_b - string_b.len();
|
let len1b = len_b - string_b.len();
|
||||||
let len2b = len_b - d.to_string().len();
|
let len2b = len_b - d.to_string().len();
|
||||||
|
|
||||||
|
let string1;
|
||||||
println!("len1 {len1}, 2 {len2}, b {len1b} 2b {len2b}");
|
let string2;
|
||||||
|
let string3;
|
||||||
println!("{a} {b} {c} {d}");
|
let string4;
|
||||||
|
let string5;
|
||||||
let mut string1 = String::from("");
|
let string6;
|
||||||
let mut string2 = String::from("");
|
|
||||||
let mut string3 = String::from("");
|
|
||||||
let mut string4 = String::from("");
|
|
||||||
let mut string5 = String::from("");
|
|
||||||
let mut string6 = String::from("");
|
|
||||||
|
|
||||||
if d != 1 {
|
if d != 1 {
|
||||||
string1 = format!("{}{string_a}{}", " ".repeat(len1 / 2), " ".repeat(len1 / 2 + len1 % 2));
|
string1 = format!("{}{string_a}{}", " ".repeat(len1 / 2), " ".repeat(len1 / 2 + len1 % 2));
|
||||||
|
@ -220,26 +204,10 @@ fn degree_two_complex(a: GaussianRational, b: GaussianRational, c: GaussianRatio
|
||||||
let b = b / a;
|
let b = b / a;
|
||||||
let c = c / a;
|
let c = c / a;
|
||||||
let delta = b * b - 4 * c;
|
let delta = b * b - 4 * c;
|
||||||
println!("this is complex {:?}", delta);
|
|
||||||
let sqrt_delta = comp_sqrt(delta);
|
let sqrt_delta = comp_sqrt(delta);
|
||||||
println!("{:?}", sqrt_delta);
|
|
||||||
|
|
||||||
println!("b {:?}", b);
|
|
||||||
let b = b / GaussianRational::new(Rational::new(-2, 1), Rational::new(0, 1));
|
let b = b / GaussianRational::new(Rational::new(-2, 1), Rational::new(0, 1));
|
||||||
|
|
||||||
println!("BEWARE IM GOING TO PRINT THE SOLUTIONS MDR");
|
|
||||||
|
|
||||||
|
|
||||||
/*
|
|
||||||
|
|
||||||
2362 / 473 + sqrt(7896511271) \ 49 / -473 + sqrt(7896511271) \
|
|
||||||
---- + sqrt | ------------------------ | + -- i sign sqrt | ------------------------- | i
|
|
||||||
32 \ 45150 / 13 \ 45150 /
|
|
||||||
|
|
||||||
*/
|
|
||||||
|
|
||||||
|
|
||||||
|
|
||||||
let mut sign = '+';
|
let mut sign = '+';
|
||||||
if sqrt_delta.sign < 0 {
|
if sqrt_delta.sign < 0 {
|
||||||
sign = '-';
|
sign = '-';
|
||||||
|
@ -290,12 +258,6 @@ fn degree_two_complex(a: GaussianRational, b: GaussianRational, c: GaussianRatio
|
||||||
string2 = format!("{string2}{sign} sqrt | {s5} | i");
|
string2 = format!("{string2}{sign} sqrt | {s5} | i");
|
||||||
string3 = format!("{string3} \\{s6}/ ");
|
string3 = format!("{string3} \\{s6}/ ");
|
||||||
|
|
||||||
/*
|
|
||||||
let string1 = format!("{}{}{} / {s1} \\ {}{}{} / {s4} \\ ", " ".repeat(space1 / 2), b.real.numerator, " ".repeat(space1 / 2 + space1 % 2), " ".repeat(space2 / 2), b.imaginary.numerator, " ".repeat(space2 / 2 + space2 % 2));
|
|
||||||
let string2 = format!("{} + sqrt | {s2} | + {} i {sign} sqrt | {s5} | i", "-".repeat(b_real_len), "-".repeat(b_imag_len));
|
|
||||||
let string3 = format!("{}{}{} \\ {s3} / {}{}{} \\ {s6} / ", " ".repeat(space3 / 2), b.real.denominator, " ".repeat(space3 / 2 + space3 % 2), " ".repeat(space4 / 2), b.imaginary.denominator, " ".repeat(space4 / 2 + space4 % 2));
|
|
||||||
*/
|
|
||||||
|
|
||||||
println!("{string1}");
|
println!("{string1}");
|
||||||
println!("{string2}");
|
println!("{string2}");
|
||||||
println!("{string3}");
|
println!("{string3}");
|
||||||
|
@ -365,15 +327,14 @@ fn print_degree_two_real(left_part: Rational, sqrt_delta: MySqrt, imaginary: boo
|
||||||
|
|
||||||
let len = std::cmp::max(string.chars().count(), format!("{d}").len()) + 2;
|
let len = std::cmp::max(string.chars().count(), format!("{d}").len()) + 2;
|
||||||
|
|
||||||
println!("{a} {b} {c} {d}");
|
|
||||||
|
|
||||||
println!("len {len} s_len {}", string.len());
|
|
||||||
println!("{string}");
|
|
||||||
|
|
||||||
if b != 0 || c != 0 {
|
if b != 0 || c != 0 {
|
||||||
println!("The two solutions are:");
|
if imaginary == true {
|
||||||
|
println!("Discriminant is less than zero. The two complex solutions are:");
|
||||||
|
} else {
|
||||||
|
println!("Discriminant is more than zero. The two solutions are:");
|
||||||
|
}
|
||||||
} else {
|
} else {
|
||||||
println!("The solution is:");
|
println!("Discriminant is zero. The solution is:");
|
||||||
}
|
}
|
||||||
if d != 1 {
|
if d != 1 {
|
||||||
println!("{}{string}", " ".repeat(4 + (len - string.chars().count()) / 2));
|
println!("{}{string}", " ".repeat(4 + (len - string.chars().count()) / 2));
|
||||||
|
@ -387,23 +348,15 @@ fn print_degree_two_real(left_part: Rational, sqrt_delta: MySqrt, imaginary: boo
|
||||||
}
|
}
|
||||||
|
|
||||||
fn degree_two_real(a: Rational, b: Rational, c: Rational) {
|
fn degree_two_real(a: Rational, b: Rational, c: Rational) {
|
||||||
println!("a {:?} b {:?} c {:?}", a, b ,c);
|
|
||||||
let mut delta = b * b - 4 * a * c;
|
let mut delta = b * b - 4 * a * c;
|
||||||
println!("delta {:?}", delta);
|
|
||||||
println!("anumera {:?}", a.numerator());
|
|
||||||
let mut imaginary = false;
|
let mut imaginary = false;
|
||||||
if delta.numerator < 0 {
|
if delta.numerator < 0 {
|
||||||
imaginary = true;
|
imaginary = true;
|
||||||
println!("imag {:?}", delta);
|
|
||||||
delta = -1 * delta;
|
delta = -1 * delta;
|
||||||
println!("imag {:?}", delta);
|
|
||||||
}
|
}
|
||||||
let mut sqrt_delta = sqrt(delta, a);
|
let mut sqrt_delta = sqrt(delta, a);
|
||||||
let mut left_part = (-1 * b) / (2 * a);
|
let mut left_part = (-1 * b) / (2 * a);
|
||||||
|
|
||||||
println!("sqrt delta {:?}", sqrt_delta);
|
|
||||||
println!("left part {:?}", left_part);
|
|
||||||
|
|
||||||
let tmp = left_part.denominator;
|
let tmp = left_part.denominator;
|
||||||
|
|
||||||
left_part.denominator *= sqrt_delta.denominator;
|
left_part.denominator *= sqrt_delta.denominator;
|
||||||
|
@ -451,36 +404,4 @@ pub fn solve(mut equation: Vec<GaussianRational>) -> Vec<GaussianRational> {
|
||||||
_ => println!("Polynomial of degree greater than 2 detected, I can't solve that !"),
|
_ => println!("Polynomial of degree greater than 2 detected, I can't solve that !"),
|
||||||
}
|
}
|
||||||
vec![]
|
vec![]
|
||||||
}
|
}
|
||||||
|
|
||||||
|
|
||||||
/*
|
|
||||||
|
|
||||||
2362 / 473 + sqrt(7896511271) \ 49 / -473 + sqrt(7896511271) \
|
|
||||||
---- + sqrt | ------------------------ | + -- i sign sqrt | ------------------------- | i
|
|
||||||
32 \ 45150 / 13 \ 45150 /
|
|
||||||
|
|
||||||
*/
|
|
||||||
|
|
||||||
/*
|
|
||||||
/
|
|
||||||
sqrt |
|
|
||||||
\
|
|
||||||
|
|
||||||
|
|
||||||
/ 473 + sqrt(7896511271) \ / -473 + sqrt(7896511271) \
|
|
||||||
2362 + 37 * sqrt | ------------------------ | + 46 * sqrt | ------------------------- |
|
|
||||||
\ 45150 / \ 45150 /
|
|
||||||
|
|
||||||
--------------------------------------------------------------------------------------------- +
|
|
||||||
|
|
||||||
21615671563
|
|
||||||
|
|
||||||
/ -473 + sqrt(7896511271) \ / 473 + sqrt(7896511271) \
|
|
||||||
2362 + 37 * sqrt | ------------------------ | - 46 * sqrt | ------------------------- |
|
|
||||||
\ 45150 / \ 45150 /
|
|
||||||
|
|
||||||
--------------------------------------------------------------------------------------------- i
|
|
||||||
|
|
||||||
21615671563
|
|
||||||
*/
|
|
Loading…
Reference in New Issue